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Abstract

We present REVEL, a partially neural reinforcement learning (RL) framework for
provably safe exploration in continuous state and action spaces. A key challenge
for provably safe deep RL is that repeatedly verifying neural networks within a
learning loop is computationally infeasible. We address this challenge using two
policy classes: a general, neurosymbolic class with approximate gradients and a
more restricted class of symbolic policies that allows efficient verification. Our
learning algorithm is a mirror descent over policies: in each iteration, it safely lifts
a symbolic policy into the neurosymbolic space, performs safe gradient updates to
the resulting policy, and projects the updated policy into the safe symbolic subset,
all without requiring explicit verification of neural networks. Our empirical results
show that REVEL enforces safe exploration in many scenarios in which Constrained
Policy Optimization does not, and that it can discover policies that outperform
those learned through prior approaches to verified exploration.

1 Introduction

Guaranteeing that an agent behaves safely during exploration is a fundamental problem in reinforce-
ment learning (RL) [[12} [1]. Most approaches to the problem are based on stochastic definitions
of safety [221 16, [1} 6], requiring the agent to satisfy a safety constraint with high probability or in
expectation. However, in applications such as autonomous robotics, unsafe agent actions — no matter
how improbable — can lead to cascading failures with high human and financial costs. As a result, it
can be important to ensure that the agent behaves safely even on worst-case inputs.

A number of recent efforts [3| [10] use formal methods to offer such worst-case guarantees during
exploration. Broadly, these methods construct a space of provably safe policies before the learning
process starts. Then, during exploration, a safety monitor observes the learner, forbidding all actions
that cannot result from one of these safe policies. If the learner is about to take a forbidden action, a
safe policy (a safety shield) is executed instead.

So far, these methods have only been used to discover policies over simple, finite action spaces.
Using them in more complex settings — in particular, continuous action spaces — is much more
challenging. A key problem is that these safety monitors are constructed a priori and are blind to the
internal state of the learner. As we experimentally show later in this paper, such a “one-size-fits-all”
strategy can unnecessarily limit exploration and impede learner performance.
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In this paper, we improve this state of the art through an RL framework, called REVELF_-] that allows
learning over continuous state and action spaces, supports (partially) neural policy representations
and contemporary policy gradient methods for learning, while also ensuring that every intermediate
policy that the learner constructs during exploration is safe on worst-case inputs. Like previous
efforts, REVEL uses monitoring and shielding. However, unlike in prior work, the monitor and the
shield are updated as learning progresses.

A key feature of our approach is that we repeatedly invoke a formal verifier from within the learning
loop. Doing this is challenging because of the high computational cost of verifying neural networks.
We overcome this challenge using a neurosymbolic policy representation in which the shield and
the monitor are expressed in an easily-verifiable symbolic form, whereas the normal-mode policy is
given by a neural network. Overall, this representation admits efficient gradient-based learning as
well as efficient updates to both the shield and monitor.

To learn such neurosymbolic policies, we build on PROPEL [28], a recent RL framework in which
policies are represented in compact symbolic forms (albeit without consideration of safety), and
design a learning algorithm that performs a functional mirror descent in the space of neurosymbolic
policies. The algorithm views the set of shields as being obtained by imposing a constraint on the
general policy space. Starting with a safe but suboptimal shield, it alternates between: (i) safely
lifting the current shield into the unconstrained policy space by adding a neural component; (ii) safely
updating this neurosymbolic policy using approximate gradients; and (iii) using a form of imitation
learning to project the updated policy back into the constrained space of shields. Importantly, none of
these steps requires direct verification of neural networks.

Our empirical evaluation, on a suite of continuous control problems, shows that REVEL enforces
safe exploration in many scenarios where established RL algorithms (including CPO [1], which is
motivated by safe RL) do not, while discovering policies that outperform policies based on static
shields. Also, building on results for PROPEL, we develop a theoretical analysis of REVEL.

In summary, the contributions of the paper are threefold. First, we introduce the first RL approach to
use deep policy representations and policy gradient methods while guaranteeing formally verified
exploration. Second, we propose a new solution to this problem that combines ideas from RL and
formal methods, and we show that our method has convergence guarantees. Third, we present
promising experimental results for our method in the continuous control setting.

2 Preliminaries

Safe Exploration. We formulate our problem in terms of a Markov Decision Process (MDP)
that has the standard probabilistic dynamics, as well as a worst-case dynamics that is used for
verification. Formally, such an MDP is a structure M = (S, A, P, ¢, 7, po, P*,Sy). Here, S is a set
of environment states; A is a set of agent actions; P(s’ | s, a) is a probabilistic transition function;
¢: 8 x A — Ris a state-action cost function; 0 < < 1 is a discount factor; po(s) is an initial state
distribution with support So; P# : S x A — 25 is a deterministic function that defines worst-case
bounds on the environment behavior; and Sy is a designated set of unsafe states that the learner must
always avoid. Because our focus is on continuous domains, we assume that S and A are real vector
spaces. The function P# is assumed to be available in closed form to the learner; because it captures
worst-case dynamics, we require that supp(P(s’ | s,a)) € P# (s, a) for all s, a.

A policy for M is a (stochastic) map 7 : S — A that determines which action the agent should take
in a given state. Each policy 7 induces a probability distribution on the cost ¢; at each time step <.
The aggregate cost of a policy 7 is J(7) = E[_, 7¢;], where ¢; is the cost at the i-th time step.

For a set S C S, we define the set of states reach; (7, S) that are reachable from S in ¢ steps under
worst-case dynamics:

reachy (7, S) = Uses aesupp(r(-[s) P#(s,a) reach; 1 (m, S) = reach; (m, reach;(r, S)).
The policy 7 is safe if (|, reach; (7, Sp)) N Sy = @. If 7 is safe, we write Safe(r).

We define a learning process as a sequence of policies £ = g, 71, ..., T,. We assume that the
initial policy 7y in this sequence is worst-case safe. Our algorithmic objective is to discover a learning

'REVEL stands for Reinforcement learning with verified exploration.



Algorithm 1 Reinforcement Learning with Formally Verified Exploration (REVEL)

: Input: Symbolic Policy Class G & Neural Policy Class F.

. Input: Initial go € G, with the guarantee ¢o - Safe(go) for some ¢o

: Define neurosymbolic policy class H = {h(s) = if P#(s, f(s)) C ¢ then f(s) else g(s)}
cfort=1,...,Tdo

ht < LIFT3(ge, Pt) Mifting the new symbolic policy and proof into the blended space

hi < UPDATE £ (he, 1) //policy gradient in neural policy space with learning rate n

(gt+1, Pe+1) < PROJECTr(he)  //synthesis of safe symbolic policy and corresponding invariant
: end for

: Return: Policy hr

process L such that the final policy 7, is safe and optimal, and every intermediate policy is safe:

T = argmin J(m) (D
m s.t. Safe(r)

V0 < i < m: Safe(m;). 2)

Formal Verification. Our learning algorithm relies on an oracle for formal verification of policies.
Given a policy 7, such a verifier tries to construct an inductive proof of the property Safe(). Such a
proof takes the form of an inductive invariant, defined as a set of states ¢ such that: (i) ¢ includes the
initial states, i.e., Sp C ¢; (ii) ¢ is closed under the worst-case transition relation, i.e., reach; (¢) C ¢;
and (iii) ¢ does not overlap with the unsafe states, i.e., ¢ N Sy = (). Intuitively, states s in ¢ are such
that even under worst-case dynamics, MDP trajectories from s can never encounter an unsafe state.

Inductive invariants can be constructed in many ways. Our implementation uses abstract inter-
pretation [8]], which represents sets of states as symbolic constraints and iteratively constructs
overapproximations of the sets reach;(Sy) for increasing 7. If the verifier can prove 7 safe using the
(inductive) invariant ¢, it returns a symbolic representation of ¢ to the learner. We denote the fact
that such a proof exists by ¢ - .

3 Learning Algorithm

Our learning method is a functional mirror descent in policy space, based on approximate gradients.
The algorithm relies on two policy classes G and H, with G C H.

The class G comprises the policies that we use as shields. These policies are safe and can be
efficiently certified as such. Because automatic verification works better on functions that belong to
certain restricted classes and are represented in compact, symbolic forms, we assume some syntactic
restrictions on our shields. The specific restrictions depend on the power of the verification oracle;
we describe the choices made in our implementation in Section 3.1}

The larger class H consists of neurosymbolic policies. Let F be a predefined class of neural policies.
We assume that each shield in G can also be expressed as a policy in F, i.e., G C F. Policies h € H
are of the form:

h(s) = if (P*(s, f(s)) C ¢) then f(s) else g(s)

where g € G, f € F, and ¢ is an inductive invariant that establishes Safe(g). We commonly denote
a policy h as above by the notation (g, ¢, f).

The “true” branch in the definition of h represents the normal mode of the policy. The condition
P#(s, f(s)) C ¢ is the safety monitor. If this condition holds, then the action f(s) is safe, as it can
only lead to states in ¢ (which does not overlap with the unsafe states). If the condition does not
hold, then f can violate safety, and the shield g is executed in its place. In either case, h is safe.
As for updates to h, we do not assume that the policy gradient V4 J(h) in the space H exists, and
approximate it by the gradient V zJ(h) in the space F of neural policies.

We sketch our learning procedure in Algorithm[I] The algorithm starts with a (manually constructed)
shield gg € G and a corresponding invariant ¢, then iteratively performs the following steps.

L1FT. This step takes as input a shield g € G and its accompanying invariant ¢, and constructs the
policy (g, ®,g) € H. Note that the neural component of this policy is just the input shield g (in a



Algorithm 2 Implementation of PROJECTg

1: Input: A neurosymbolic policy h = (g, ¢, f) where g = [(g1,X1),- - -, (gn, Xn)]

2: g*+g

3:fort=1,...,7do

4: 1) < CUTTINGPLANE(Y;) for heuristically selected i

5. gi < IMITATESAFELY(f, gi, Xi A); g7 < IMITATESAFELY (£, gi, x:i A )
6.

7

8

g’ « SPLIT(g,1, (g, xi A ), (g7, xi A )
if D(g',h) < D(g*,h) then

: g g
9: end if
10: end for

11: ¢* + SAFESPACE(g™)
12: return (g*, ¢")

neural representation). In practice, to construct this component, we can train a randomly initialized
neural network to imitate g, using an algorithm such as DAGGER [25]. Because the safety of any
policy (g, ¢, f') only depends on g and ¢, this step is safe.

UPDATE . This procedure performs a series of gradient updates to a neurosymbolic policy h =
(g, 9, f). As mentioned earlier, this step uses the approximate policy gradient V zJ (k). This means
that after an update, the new policy is (g, ¢, f — nV zJ(h)), for a suitable learning rate 1. As the
update does not change g and ¢, the new policy is provably safe. Also, we show later that, under
certain assumptions, the regret introduced by our approximation of the gradient is bounded.

PROJECTg. This procedure implements the projection operation of mirror descent. Given a
neurosymbolic policy h = (g, ¢, f), the procedure computes a policy g’ € G that satisfies g’ =
argming, g D(g", (g, ¢, f)) for some Bregman divergence D. Along with g, we compute an
invariant ¢’ such that ¢’ - Safe(g’).

The computation of ¢’ can be naturally cast as an imitation learning task with respect to the demon-
stration oracle (g, ¢, f). Prior work [28] 29]] has given heuristic solutions to this problem for the
case when ¢g” obeys certain syntactic constraints. In our setting, we have an additional semantic
requirement: g” must be provably safe. How to solve this problem depends on the precise definition of
the class of shields G. Section [3.1]sketches the approach to this problem used in our implementation.

3.1 Instantiation with Piecewise Linear Shields

Any attempt to implement REVEL must start by choosing a class G of shields. Policies in G should
be sufficiently expressive to allow for good learning performance but also facilitate verification. In
our implementation, we choose G to comprise deterministic, piecewise linear policies of the form:

g1(s) if x1(s)
o(s) = g2(s) i x2(s) A —xa(s)

gn(s) if xn(s) A (A1§i<n —Xi(8)),
where x1, ..., X are linear predicates that partition the state space, and each g; is a linear function.
We represent g(s) as a list of pairs (g;, x;). We refer to the subpart of the state space defined by
Xi A\ /\;;11 —x; as the region for linear policy g; and denote this region by Region(g;).
Now we sketch our implementation of Algorithm[I] Since the LIFTy and UPDATEz procedures

are agnostic to the choice of G, we focus on PROJECTg, which seeks to find a shield g at minimum
imitation distance D(g, h) from a given h € H.

Our implementation of this operation is the iterative procedure in Algorithm 2] Here, we start with an
input policy h = (g, ¢, f). In each iteration, we identify a component g; with region ;, then perform
the following steps: (i) Sample a cutting plane that creates a more fine-grained partitioning of the safe

region, by splitting the region y; into two new regions x} and x?. (ii) For each new region x7, use a
subroutine IMITATESAFELY to construct a safe linear policy ¢! (and a corresponding invariant) that
minimizes D(g], h) within the region x?. (iii) Replace (g;, x;) by the two new components, leading



to the creation of a new, refined shield g’. The procedure ends by returning the most optimal shield g’
(and an invariant obtained by combining the invariants of the g; -s) constructed through this process.

Now we sketch IMITATESAFELY, which constructs safe and imitation-loss-minimizing linear policies.
By collecting state-action pairs using DAGGER [25]], we reduce the procedure’s objective to a series
of constrained supervised learning problems. Each of these problems is solved using a projected
gradient descent that alternates between gradient updates to a linear policy and projections into the
set of safe linear policies. For more details, see the supplementary material.

3.2 Theoretical Analysis

The REVEL approach introduces two new sources of error over standard mirror descent. First, we
approximate the gradient V4 by V z, which introduces bias. Second, our projection step may be
inexact. Prior work [28]] has studied methods for implementing the projection step with bounded
error. Here, we bound the bias in the gradient approximation under some simplifying assumptions,
and use this result to prove a regret bound on the final shield that our method converges on. We define
a safety indicator Z which is zero whenever the shield is invoked and one otherwise. We assume:

. H is a vector space equipped with an inner product (-, -) and induced norm |1 = /(h, h),
. J is convex in ‘H, and VJ is L y-Lipschitz continuous on #,

. H is bounded (i.e., sup{||h — /|| | h, W' € H} < o0),

E[1 — Z] < (, i.e., the probability that the shield is invoked is bounded above by (,

. the bias introduced in the sampling process is bounded by 3, i.e., |[E[V# | h] — V£J(h)| < B,
where V r is the estimated gradient

6. fors € S,a € A, and policy h € H, if h(a | s) > O then h(a | s) > 0 for some fixed 6 > 0.

Intuitively, this last assumption amounts to cutting of the tails of the distribution so that no action
can be arbitrarily unlikely. Now, let the variance of the gradient estimates be bounded by o2, and
assume the projection error ||g: — g5 || < e where g} is the exact projection of a neurosymbolic policy
onto G and g; is the computed projection. Let R be an a-strongly convex and L g-strongly smooth
regularizer. Then the bias of our gradient estimate is bounded by Lemma|[I]and the expected regret
bound is given by Theorem I}

Lemma 1. Let y be the diameter of H, i.e., v = sup{||h — W'|| | h, b’ € H}. Then the bias incurred
by approximating V4, J(h) with V xJ(h) and sampling is bounded by

H]E {@t | h} - VHJ(h)H = O(B + L;0).

Theorem 1. Let g1,...,gr be a sequence of shields in G returned by REVEL and let g* be the

optimal programmatic policy. Choosing a learning rate 1 = % (% + e) we have the expected

regret over T' iterations:

T
;Zﬂg»] - J(g) =0 (w; +e+ﬂ+LJ<>

This theorem matches the expectation that when a blended policy h = (g, ¢, f) is allowed to
take more actions without the shield intervening (i.e., { decreases), the regret bound is decreased.
Intuitively, this is because when we use the shield, the action we take does not depend on the neural
network f, so the learner does not learn anything useful. However if & is using f to choose actions,
then we have unbiased gradient information as in standard RL.

4 Experiments

Now we present our empirical evaluation of REVEL. We investigate two questions: (1) How
much safer are REVEL policies compared to state-of-the-art RL techniques that lack worst-case
safety guarantees? What is the performance penalty for this increased safety? (2) Does REVEL offer
significant performance gains over prior verified exploration approaches based on static shields[ 10} 3]?
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Figure 1: Training performance comparison on our benchmarks. The y-axis represents the Cost J ()
and the x-axis gives the number of training episodes.

To answer these questions, we compared REVEL against three baselines: (1) Deep Deterministic
Policy Gradients (DDPG) [21]; (2) Constrained policy optimization (CPO) [1]]; and (3) a variant of
REVEL that never updates the user-provided shield. Of these, CPO is designed for safe exploration
and takes into account a safety cost function. For DDPG, we engineered a reward function that has a
penalty for safety violations. Details of hyperparameters that we used appear in the Appendix.

Our experiments used 10 benchmarks that include classic control problems, robotics applications, and
benchmarks from prior work [10]. For each of these environments, we hand-constructed a worst-case,
piecewise linear model of the dynamics.
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Figure 3: Cumulative safety violations during training.

Performance. First, we compare the policies learned using REVEL against policies learned using
the baselines in terms of their cost (lower is better). Figures |I| and|2| show the cost over time of the
policies during training. The results suggest that:

e The performance of REVEL is competitive with (or even better than) DDPG for 7 out of the

10 benchmarks. REVEL achieves significantly better reward than DDPG in the “car-racing’

s

benchmark, and reward is only slightly worse for 2 benchmarks.

e REVEL has better performance than CPO on 4 out of the 10 benchmarks and only performs
slightly worse on 2. Furthermore, the cost incurred by CPO is significantly worse on 2 benchmarks

(noisy-road and car-racing).

e REVEL outperforms the static shielding approach on 4 out of 10 benchmarks. Furthermore, the
difference is very substantial on two of these benchmarks (noisy-road and mountain-car).

Benchmark DDPG CPO
mountain-car 0 3.6
road 0 0
road-2d 1134 70.8
noisy-road 1130.4  8526.4
noisy-road-2d | 107.4 0
obstacle 124 1.0
obstacle2 96 118.6
pendulum 92.4 9906
acc 4 673
car-racing 4956.2 22.4

Table 1: Safety violations.

Safety. To validate whether the safety guarantee provided by
REVEL is useful, we consider how DDPG and CPO behave
during training. Specifically, Table[T]shows the average num-
ber of safety violations per run for DDPG and CPO. As we
can see from this table, DDPG and CPO both exhibit safety
violations in 8 out of the 10 benchmarks. In Figure[3] we show
how the number of violations varies throughout the training
process for a few of the benchmarks. The remaining plots are
left to the appendix.

Qualitative Assessment. To gain intuition about the differ-
ence between policies that REVEL and the baselines compute,
we consider trajectories from the trained policies for two of
our benchmarks that are easy to visualize. Figure @] shows the

trajectories taken by each of the policies for the obstacle2 benchmark. In this environment, the policy
starts in the lower left corner, and the goal is to move to the green circle in the upper right. However,
the red box in the middle is unsafe. As we can see from Figure[d] all of the policies have learned to
go around the unsafe region in the center. However DDPG has not reinforced this behavior enough
and still enters the unsafe region at the corner. By contrast, the statically shielded policy manages to
avoid the region, but there is a very clear bend in its trajectory where the shield has to step in. Revel
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Figure 4: Trajectories for obstacle2. Figure 5: Trajectories for acc.

avoids the unsafe region while maintaining a smooth trajectory throughout. In this case, CPO also
learns to avoid the unsafe region and go to the goal. (Because the environment is symmetrical, there
is no significance to the CPO curve going up first and then right.)

Figure [5] shows trajectories for “acc”, which models an adaptive cruise control system where the
goal is to follow a lead car as closely as possible without crashing into it. The lead car can apply an
acceleration to itself at any time. The x-axis shows the distance to the lead car while the y-axis shows
the relative velocities of the two cars. Here, all three trajectories start by accelerating to close the gap
to the lead car before slowing down again. The statically shielded (and most conservative) policy is
the first to slow down. The DDPG and CPO policies fail to slow down soon enough or quickly enough
and crash into the lead car (the red region on the right side of the figure). In contrast, the REVEL
policy can more quickly close the gap to the lead car and slow down later while still avoiding a crash.

5 Related Work

There is a growing literature on safety in RL [[13]]. Approaches here can be classified on basis of
whether safety is guaranteed during learning, or deployment. REVEL, and, for example, CpO [1]],
were designed to enforce safety during training. Another way to categorize approaches is by whether
their guarantees are probabilistic (or in expectation) or worst-case. Most approaches [22, 16} |1} 6] are
in the former category; however, REVEL and prior approaches based on verified monitors [3} [10, [11]]
are in the latter camp. Now we discuss in more detail three especially related threads of work.

Safety via Shielding. These approaches rely on a definition of error states or fatal transitions to
guarantee safety and have been used extensively in both RL and control theory [22 3} 7, [10, 11} [15} 23}
31]]. Our approach follows this general framework, but crucially introduces a mechanism to improve
the shielded-policy during training. This is achieved by projecting the neural policy onto the shielded
policy space. The idea of synthesizing a shield to imitate a neural policy was explored in [31]], but this
work only generated the shield after training, so there are no guarantees about safety during training.

Formal Verification of Neural Networks. There is a growing literature on the verification of worst-
case properties of neural networks [4, |14} 17,18, 130]]. In particular, a few recent papers [[16} 26] target
the verification of neural policies for autonomous agents. However, performing such verification
inside a learning loop is computationally infeasible — in fact, state-of-the-art techniques failed to
verify a single network from our benchmarks within half an hour.

Safety via Optimization Constraints. Many recent approaches to safe RL rely on specifying safety
constraints as an additional cost function in the optimization objective [ 15, |9, [19, 20]. These
approaches typically provide safety up to a certain threshold by requiring that the additional cost
function is kept below a certain constant. In contrast, our approach is suitable for use cases in which
safety violations are completely unacceptable and where provable guarantees are required.

6 Conclusion

We have presented REVEL, an RL framework that permits formally verified exploration while
supporting continuous action spaces and contemporary learning algorithms. Our key innovation is to
cast the verified RL problem as a form of mirror descent that uses a verification-friendly symbolic
policy representation along with a neurosymbolic policy representation that benefits learning.



One limitation of this work is its assumption of a fixed worst-case model of the environment. Allowing
this model to be updated as learning progresses [[L1]] is a direction for future work. The development
of incremental verification techniques to further allay the cost of repeated verification is another
natural direction. Progress on such verification techniques can potentially allow the use of more
expressive classes of shields, which, in turn, can boost the learner’s overall performance.



Broader Impact

In the recent past, reinforcement learning has seen numerous advances and found applications in
safety-critical settings. System failures in this setting can result in significant loss of property or even
loss of life. This work takes a step towards solving this problem by guaranteeing that RL agents do
not violate safety properties.

As with any safety-related work, the consequences of failure or misuse of this technique can be
severe. Specifically, there is a risk that a user might assume that their system is guaranteed safe when
this is not the case (for example, if the user fails to adequately specify the environment or safety
property). Writing correct safety specifications is known to be hard, so inexpert users may feel an
unwarranted sense of security. While misuse of the tool carries great risk, proper use can confer
substantial advantages. In particular, it may allow the benefits of RL to be brought to domains, such
as robotics and autonomous vehicles, where failure has a very high cost.
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A Safely Imitating a Neural Policy

In this section, we describe our projection algorithm for piecewise linear policies in more detail.
Algorithm [2] defines this operation at a high-level, but leaves out some of the details of the IMITATE-
SAFELY subroutine. The role of IMITATESAFELY is to learn a linear policy which is provably safe on
some region and behaves as similarly to the neural controller as possible on that region. Since linear
policies are differentiable, we adopt a projected gradient descent approach. To formalize this, we
note that a linear policy g is just a matrix in R”*™ where n is the dimension of the action space and
m is the dimension of the state space. We will use 0, to refer to a vector in R™" parameterizing g.

Algorithm 3 Safely imitating a network using a given starting point and partition.

1: Input: A neural policy f, a region ¥, and a linear policy g.
2: gF g

3: while * do

4: S < COMPUTESAFEREGION(g*, x)

5 g" <« g*—aVD(g",N)

6:  g* < projs(g*)

7: end while

8: return g*

Now our safe imitation algorithm is described in Algorithm[3] In each iteration, we first compute
a safe region in the parameter space of g* over the region . This is done by starting with a region
bigger than the gradient step size and then iteratively searching for unsafe controllers and trimming
the region to remove them. The returned region S C R"™*™ contains ¢* and only contains safe
policies over the region x. In our implementation .S represents an interval in R constraining 6,,.
Next, we take a gradient step according to the imitation loss D. For example D may be computed
using a DAgger-like algorithm to gather a dataset for supervised learning. Finally, we project g* into
the safe region S computed earlier. Specifically, this means projecting 6,4+ into the region of R™™
represented by S. Notice that since we project back into S after each iteration, the policy returned by
IMITATESAFELY is known to be safe on x.

Intuitively, recomputing S at each iteration allows the controller to learn behavior which is more
different from the starting point g than would otherwise be possible. This is because computing a
safe region involves abstracting the behavior of the system and in general it is intractable to compute
the entire safe of safe policies in advance. Recomputing the safe space using the current controller at
each step means we only need to prove the safety of a relatively small piece of the policy space local
to the current controller. Specifically, if we can verify a region at least as large as one gradient step
then the gradient descent procedure is unconstrained for that step. By repeating this process at each
step, we only end up needing to verify a thin strip of policies surrounding the trajectory the gradient
descent algorithm takes through the policy space.

B Theoretical Analysis

Here we provide proofs of the theoretical results from Section[3.2]and extend the discussion of a few
theoretical issues.

Recall from Section [3.2]that we require the policy space H to be a vector space equipped with an
inner product (-, -) inducing a norm ||h|| = \/(h, h). Addition and scalar multiplication are defined
in the standard way, i.e., (Au + kv)(s) = Au(s) 4+ kv(s). The cost functional of a policy w is defined
as J(u) = [gc(s,u(s))dp"(s) where p* is the state distribution induced by u. We assume that G
and F are subspaces of H so that there is a well-defined notion of distance between policies in these
classes. Additionally, notice that while a policies in G may not be differentiable in terms of their
programmatic representation, they may still be differentiable when viewed as points in the ambient
space H. We will assume # is parameterizable by a vector in R" for some V.

We will make use of a few standard notions from functional analysis, restated here for convenience:

Definition 1. (Strong convexity) A differentiable function R is a-strongly convex w.r.t. a norm || - || if
R(y) = R(z) + (VR(z),y — x) + §ly — =
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Definition 2. (Lipschitz continuous gradient smoothness) A differentiable function R is L-strongly
smooth w.r.t. anorm || - || if |[VR(z) — VR(Y)|l« < Lg|lz — y||.

Definition 3. (Bregman divergence) For a strongly convex regularizer R, Dg(x,y) = R(z) —
R(y) — (VR(y), x — y) is the Bregman divergence between x and y. Note that D, is not necessarily
symmetric.

With these preliminaries, we can now prove Theorem [I]from Section[3.2] The high-level strategy
for this proof will be to prove Lemmal|l| and then combine this result with a more general regret
bound from [28§]]. First we restate the general theorem below. Let R be an a-strongly convex and
L g-smooth functional w.r.t. the norm || - || on . Additionally let V3 be a Fréchet gradient on H.
Then our algorithm can be described as follows: start with go € G (provided by the user) then for
each iteration ¢:

1. Compute a noisy estimate of the gradient %J(gt_l) ~VJ(gi-1).
2. Update in H: VR(ht) = VR(hi—1) — nVJ(gi—1).

3. Perform an approximate projection g; = projg(ht) ~ argming g Dy (g, hy).

This procedure is approximate functional mirror descent under bandit feedback. We let D be the
diameter of G, i.e., D = sup{|lg — ¢’|| | 9.4’ € G}. L is the Lipschitz constant of the functional .J
on H. 3 and o2 are bounds on the bias and variance, respectively, of the gradient estimate in each
iteration. « and L are the strongly convex and smooth coefficients of the functional regularizer R.
Finally € is the bound on the projection error with respect to the same norm || - ||. We will make use
of the following general result:

Theorem 2. [28|] Let g1, . .., g be a sequence of programmatic policies returned by REVEL and g*
be the optimal programmatic policy. We have the expected regret bound

T
1 LgD?* €LpD n(o?+ L%)
75 J —J(g*) <

In particular, choosing n = +/(1/T + €) /0?2, this simplifies to
1 o /1
T;J(gt)]—J(g*):O<a T+e+[3>.

Now we restate and prove Lemma [I| from the main paper to provide a bound on the bias of our
gradient estimate. Recall our definition of the immediate safety indicator Z as zero if the shield is
invoked and one otherwise. Recall the assumptions from Section [3.2}

E + AD.

E

. J is convex in H and VJ is L j-Lipschitz continuous on H,

. H is bounded (i.e., sup{||h — /|| | h, W' € H} < 00),

. E[1 — Z] < ¢, i.e., the probability that the shield is invoked is bounded above by ¢,

- the bias introduced in the sampling process is bounded by £, i.e., IE[V £ | h)=VEJ(h)| <
B, where V r is the estimated gradient

5. fors € S,a € A, and policy h € H, if h(a | s) > O then h(a | s) > ¢ for some fixed
0> 0.

AW N =

Under these assumptions:

Lemma. Let D be the diameter of H, i.e., D = sup{||h — }'|| | h,h’ € H}. Then the bias incurred
by approximating YV J(h) with V £ J(h) and sampling is bounded by

H]E [@; | h] - VHJ(h)H = O(8 + LjC).

Proof. First, we note that |[E[Vr | k] — V3 J(h)|| < |[E[V£ | ] — VEJ(R)| + [|[V£I(h) —
VuJ(h)]|. We have already assumed that the first term is bounded by 3, so we will proceed to bound
the second term.
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Let h = (g, ¢, f) be a policy in H. By the policy gradient theorem [27], we have that
Vrd(h) = Esnpy.amn [Vrlogh(a] s)Q" (s, a)] 3)

where py, is the state distribution induced by h and Q" is the long-term expected reward from a state
s and action a. We will omit the distribution subscript in the remainder of the proof for convenience.
Now note that if Z is one, then then h(a | s) = f(a | s), so that in particular

Vrlogh(a | s)Q"(s,a) = Vylogh(a | s)Q" (s, a).
On the other hand, if Z is zero, then h(a | s) is independent of f, and so we have
Vrlogh(a|s)Q"(s,a) =0.
Thus, we can rewrite Equation [3]as
VzJ(h) =E [ZVylogh(a| s)Q"(s,a)]
=E[Z]E [V logh(a | 5)Q" (s, a)] + Cov(S, V¢ log h(a | $)Q"(s,a))
= E[Z]V#J(h) + Cov(S, Vi logh(a | s)Q"(s,a)). 4)

Note that the covariance term is a vector where the ’th component is the covariance between Z and
the #’th component of the gradient V%,. Then for each ¢, by Cauchy-Schwarz we have

|Cov(Z, Vi, logh(a | s)Q"(s,a))| < \/Var(Z)VaI(V?H log h(a | s)Q"(s,a)).

Since Z € {0, 1} we must have 0 < Var[Z] < 1 so that

|Cov(Z, Vi, logh(a | s)Q"(s,a))| < \/Var(V?H logh(a | s)Q"(s,a)).

By assumption, for every state-action pair (a, s) if (a, s) is in the support of pp, then h(a | s) > 0. We
also have that Q" (s, a) is bounded (because .J is Lipschitz on H and H is bounded). Then because
the gradient of the log is bounded above by one and because V i H is bounded by definition, we
have ||V, log h(a | s)Q"(s,a)| is bounded. Therefore by Popoviciu’s inequality, Var(V?, log h(a |
5)Q" (s, a)) is bounded as well. Choose B > Var(V, log h(a | s)Q" (s, a)) for all i. Then we have
| Var(V log h(a | s)Q"(s,a))||sc < v/B,and because H is finite-dimensional, || Var(V 4 log h(a |
5)Q"(s,a))| < ¢v/'B for some constant ¢ for any norm || - ||.

Substituting this into Equation 4] we have
IV£J(h) —E[S]V3J (h)|| < eVB.
Then
IVFI(h) = Va J(W)|| < [[VFJ(h) = E[S]VuJ (R)]| + [[E[SIVa I (h) = Va I (R)]|
< VB + |E[S]VuJ(h) — Vg J(h)].

By assumption, V J(h) is Lipschitz and H is bounded. Let D be the diameter of # and recall that
L is the Lipschitz constant of V4 J(h). Choose an arbitrary hy € H and let Jy = V4 J(ho). Then
for any policy h € H we have |V J(h)|| < Jo + DL;. Then

IELZIV 32T (h) — Ve ()] = | (E[Z] — 1)V (b)]
= [E[Z] - 1{IVxI ()]
< [E[2] - 1](Jo + DL).

Since Z is an indicator variable, we have 0 < E[Z] < 1 so that |[E[Z] — 1| = 1 — E[Z]. Then finally
we assume D is a known constant to simplify presentation, and arrive at

IVFI(h) = Ve (W) < eVB + (1 = E[Z])(Jo + DLj) = O(Ls()
and plugging this back into the original triangle inequality we have

H]E [@; | h} - VHJ(h)H = 0(B+ LjC).
O

Now Theorem [T|follows directly by plugging this bound on gradient estimate bias into Theorem 2|
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C Experimental Data and Additional Results

In this section we provide more details about our experiments along with additional results.

First, we give a qualitative description of each benchmark:

e mountain-car is a continuous version of the classic mountain car problem. In this environ-
ment the goal is to move an underpowered vehicle up a hill by rocking back and forth in a
valley to build up momentum. The safety property asserts that the car does not go over the
crest of the hill on the left.

e road, road-2d, noisy-road, and noisy-road-2d are all variants of an autonomous car control
problem. In each case, the car’s goal is to move to a specified end position while obeying
a given speed limit. The noisy variants introduce noise in the environment, while the 2d
variants involve moving in two dimensions to reach the goal.

e In obstacle and obstacle2, a robot moving in 2D space must reach a goal position while
avoiding an obstacle. In obstacle this obstruction is placed off to the side so it only affects
the agent during exploration (but the shortest path to the goal does not intersect it). In
obstacle2, the obstruction is placed between the starting position and the goal so that the
policy must learn to move around it (see Figure [).

e pendulum is a classic pendulum environment where the system must swing a pendulum up
until it is vertical. The safety property in this case is a bound on the angular velocity of the
pendulum.

e acc is an adaptive cruise control benchmark taken from [10]] and modified to use a continuous
action space. Here the goal is to follow a lead car as closely as possible without crashing
into it. At each time step the lead car chooses an acceleration at random (from a truncated
normal distribution) to apply to itself.

e car-racing is similar to obstacle2 except that in this case the goal is to reach a goal state on
the opposite side of the obstacle and then come back. This requires the agent to complete a
loop around the obstacle.

For each benchmark, we consider a bounded-time variant of the desired safety property. That is, for
some fixed T we guarantee that a policy h = (g, ¢, f) cannot violate the safety property within T
time steps starting from any state satisfying ¢.

For most benchmarks, we train for 100,000 environment interactions with a maximum episode length
of 100. For mountain-car we use a maximum episode length of 200 and 200,000 total environment
interactions. For obstacle, obstacle2, and car-racing we use an episode length of 200 with 400,000
total environment interactions. For every benchmark we synthesize five new shields at even intervals
throughout training. To evaluate CPO we use the implementation provided with the Safety Gym
repository [24]]. To account for our safety critical benchmarks, we reduce the tolerance for safety
violations in this implementation by lowering the corresponding hyper-parameter from 25 to 1. For
DDPG, we use an implementation from prior work [31]], which is also what we base the code for
REVEL on. We ran each experiment with five independent, randomly chosen seeds.

We now provide more details about the safety violations seen during training. The plots in Figure[6]
show the number of safety violations over time for DDPG and CPO. This figure is the same as
Figure [3|except that it shows information for every benchmark.
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