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Abstract

We present a reinforcement learning framework,

called Programmatically Interpretable Reinforce-

ment Learning (PIRL), that is designed to gen-

erate interpretable and verifiable agent policies.

Unlike the popular Deep Reinforcement Learn-

ing (DRL) paradigm, which represents policies

by neural networks, PIRL represents policies us-

ing a high-level, domain-specific programming

language. Such programmatic policies have the

benefits of being more easily interpreted than

neural networks, and being amenable to veri-

fication by symbolic methods. We propose a

new method, called Neurally Directed Program

Search (NDPS), for solving the challenging non-

smooth optimization problem of finding a pro-

grammatic policy with maximal reward. NDPS

works by first learning a neural policy network

using DRL, and then performing a local search

over programmatic policies that seeks to mini-

mize a distance from this neural “oracle”. We

evaluate NDPS on the task of learning to drive

a simulated car in the TORCS car-racing envi-

ronment. We demonstrate that NDPS is able to

discover human-readable policies that pass some

significant performance bars. We also show that

PIRL policies can have smoother trajectories, and

can be more easily transferred to environments

not encountered during training, than correspond-

ing policies discovered by DRL.

1. Introduction

Deep reinforcement learning (DRL) has had a massive im-

pact on the field of machine learning and has led to re-

markable successes in the solution of many challenging

tasks (Mnih et al., 2015; Silver et al., 2016; 2017). While

neural networks have been shown to be very effective in
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learning good policies, the expressivity of these models

makes them difficult to interpret or to be checked for con-

sistency for some desired properties, and casts a cloud over

the use of such representations in safety-critical applica-

tions.

Motivated to overcome this problem, we propose a learn-

ing framework, called Programmatically Interpretable Re-

inforcement Learning (PIRL)1, that is based on the idea of

learning policies that are represented in a human-readable

language. The PIRL framework is parameterized on a high-

level programming language for policies. A problem in-

stance in PIRL is similar to a one in traditional RL, but also

includes a (policy) sketch that syntactically defines a set of

programmatic policies in this language. The objective is to

find a program in this set with maximal long-term reward.

Intuitively, the policy programming language and the

sketch characterize what we consider “interpretable”. In

addition to interpretability, the syntactic restriction on poli-

cies has three key benefits. First, the language can be used

to implicitly encode the learner’s inductive bias that will

be used for generalization. Second, the language can allow

effective pruning of undesired policies to make the search

for a good policy more efficient. Finally, it allows us to use

symbolic program verification techniques to formally rea-

son about the learned policies and check consistency with

correctness properties. At the same time, policies in PIRL

can have rich semantics, for example allowing actions to

depend on events far back in history.

A key technical challenge in PIRL is that the space of poli-

cies permitted in an instance can be vast and nonsmooth,

making optimization extremely challenging. To address

this, we propose a new algorithm called Neurally Directed

Program Synthesis (NDPS). The algorithm first uses DRL

to compute a neural policy network that has high perfor-

mance, but may not be expressible in the policy language.

This network is then used to direct a local search over

programmatic policies. In each iteration of this search,

we maintain a set of “interesting” inputs, and update the

program so as to minimize the distance between its out-

puts and the outputs of the neural policy (an “oracle”) on

these inputs. The set of interesting inputs is updated as

the search progresses. This strategy, inspired by imitation

1PIRL is pronounced Pi-R-L (as in π-RL)
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learning (Ross et al., 2011; Schaal, 1999), allows us to per-

form direct policy search in a highly nonsmooth policy

space.

We evaluate our approach in the task of learning to

drive a simulated car in the TORCS car-racing environ-

ment (Wymann et al., 2014), as well as three classic con-

trol games (we discuss the former in the main paper, and

the latter in the Appendix). Experiments demonstrate that

NDPS is able to find interpretable policies that, while not

as performant as the policies computed by DRL, pass some

significant performance bars. Specifically, in TORCS, our

policy sketch allows an unbounded set of programs with

branches guarded by unknown conditions, each branch

representing a Proportional-Integral-Derivative (PID) con-

troller (Åström & Hägglund, 1995) with unknown parame-

ters. The policy we obtain can successfully complete a lap

of the race, and the use of the neural oracle is key to do-

ing so. Our results also suggest that a well-designed sketch

can serve as a regularizer. Due to constraints imposed by

the sketch, the policies for TORCS that NDPS learns lead

to smoother trajectories than the corresponding neural poli-

cies, and can tolerate greater noise. The policies are also

more easily transferred to new domains, in particular race

tracks not seen during training. Finally, we show, using sev-

eral properties, that the programmatic policies that we dis-

cover are amenable to verification using off-the-shelf sym-

bolic techniques.

2. Programmatically Interpretable

Reinforcement Learning

In this section, we formalize the problem of programmati-

cally interpretable reinforcement learning (PIRL).

We model a reinforcement learning setting as a Partially

Observable Markov Decision Process (POMDP) M =
(S,A,O, T (·|s, a), Z(·|s), r, Init , γ). Here, S is the set of

(environment) states. A is the set of actions that the learn-

ing agent can perform, and O is the set of observations

about the current state that the agent can make. An agent ac-

tion a at the state s causes the environment state to change

probabilistically, and the destination state follows the dis-

tribution T (·|s, a). The probability that the agent makes

an observation o at state s is Z(o|s). The reward that the

agent receives on performing action a in state s is given

by r(s, a). Init is the initial distribution over environment

states. Finally, 0 < γ < 1 is a real constant that is used to

define the agent’s aggregate reward over time.

A history of M is a sequence h = o0, a0, . . . , ak−1, ok,

where oi and ai are, respectively, the agent’s observation

and action at the i-th time step. Let HM be the set of his-

tories in M . A policy is a function π : HM → A that

maps each history as above to an action ak. For each pol-

icy, we can define a set of histories that are possible when

the agent follows π. We assume a mechanism to simulate

the POMDP and sample histories that are possible under a

policy. The policy also induces a distribution over possi-

ble rewards Ri that the agent receives at the i-th time step.

The agent’s expected aggregate reward under π is given by

R(π) = E[
∑∞

i=0 γ
iRi]. The goal in reinforcement learn-

ing is to discover a policy π∗ that maximizes R(π).

A Programming Language for Policies. The distinctive

feature of PIRL is that policies here are expressed in a high-

level, domain-specific programming language. Such a lan-

guage can be defined in many ways. However, to facilitate

search through the space of programs expressible in the lan-

guage, it is desirable for the language to express computa-

tions as compactly and canonically as possible. Because of

this, we propose to express parameterized policies using a

functional language based on a small number of side-effect-

free combinators. It is known from prior work on program

synthesis (Feser et al., 2015) that such languages offer nat-

ural advantages in program synthesis.

We collectively refer to observations and actions, as well as

auxiliary integers and reals generated during computation,

as atoms. Our language considers two kinds of data: atoms

and sequences of atoms (including histories). We assume a

finite set of basic operators over atoms that is rich enough

to capture all common operations on observations and ac-

tions.

Figure 1 shows the syntax of this language. The nontermi-

nals E and x represent expressions that evaluate to atoms

and histories, respectively. We sketch the semantics of the

various language constructs below.

• c ranges over a universe of numerical constants, and

⊕ is a basic operator;

• peek (x, i) returns the observation from the i-th time

step from a history x, and peek (x,−1) is used as

shorthand for the most recent observation;

• fold is a standard higher-order combinators over se-

quences with the semantics:

fold(f, [e1, . . . , ek], e) = f(ek, f(ek−1, ...f(e1, e)))

• x, x1, x2 are variables. As usual, unbound variables

are assumed to be inputs.

The language comes with a type system that distinguishes

between different types of atoms, and ensures that language

constructs are used consistently. The type system can catch

common errors, such as applying peek (x, k + 1) to a

history of size k. This type system identifies a set of ex-

pressions whose inputs are histories and outputs are actions.
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E ::= c | x | ⊕(E1, . . . , Ek) | peek (x, i) |

fold ((λx1, x2. E1), α)

Figure 1. Syntax of the policy language.

These expressions are known as programmatic policies, or

simply programs.

The combinator over sequences, fold, will be operating

over histories in our programs. Since histories can be of

variable lengths, we restrict these combinators to operate

on only the last n elements of a sequence, for some fixed n.

This restriction provides us the ability to use these combi-

nators in a consistent manner.

Sketches. Discovering an optimal programmatic policy

from the vast space of legitimate programs is typically im-

practical without some prior on the shape of target poli-

cies. PIRL allows the specification of such priors through

instance-specific syntactic models called sketches.

We define a sketch as a grammar of expressions over atoms

and sequences of atoms. The sketch places restrictions on

the kinds of basic operators that will be considered during

policy search. Formally, the sketch is obtained by restrict-

ing the grammar in Figure 1. The set of programs permitted

by a sketch S is denoted by [[S]].

PIRL. The PIRL problem can now be stated as follows.

Suppose we are given a POMDP M and a sketch S. Our

goal is to find a program e∗ ∈ [[S]] with optimal reward:

e∗ = argmax
e∈[[S]]

R(e). (1)

Example. Now we consider a concrete example of PIRL,

considered in more detail in Section 5.

Suppose our goal is to make a (simulated) car complete

laps on a track. We want to do so by learning policies for

tasks like steering and acceleration. Suppose we know that

we could get well-behaved policies by using PID control —

specifically, by switching back and forth between a set of

PID controllers. However, we do not know the parameters

of these controllers, and neither do we know the conditions

under which we should switch from one controller to an-

other. We can express this knowledge using the following

sketch:

P ::= peek((ǫ − hi),−1)

I ::= fold(+, ǫ− hi)

D ::= peek(hi,−2)− peek(hi,−1)

C ::= c1 ∗ P + c2 ∗ I + c3 ∗D

B ::= c0 + c1 ∗ peek(h1,−1) + . . .

· · ·+ ck ∗ peek(hm,−1) > 0 |

B1 or B2 | B1 and B2

E ::= C | if B then E1 else E2.

Here, E represents programs permitted by the sketch. The

program’s input is a history h. We assume that this

sequence is split into a set of sequences {h1, . . . , hm},
where hi is the sequence of observations from the i-th

of m sensors. The sensor’s most recent reading is given

by peek(hk,−1), and its second most recent reading is

peek(hk,−2). The operators +, −, ∗, >, and if-then-else

are as usual. The program (optionally) evaluates a set of

boolean conditions (B) over the current sensor readings,

then chooses among a set of discretized PID controllers,

represented by C. In the definition of C, P is the propor-

tional term, I is the discretized integral term (calculated

via a fold), and D is a finite-difference approximation of

the derivative term, ǫ is a known constant and represents a

fixed target for the controller, (ǫ−hi) performs an element-

wise operation on the sequence hi. The symbols ci are

real-valued parameters. Recall that the fold acts over a

fixed-sized window on the history, and hence can be used

as a discrete approximation of the integral term in a PID

controller.

The program in Figure 2 shows the body of a policy for ac-

celeration that the NDPS algorithm finds given this sketch

in the TORCS car racing environment. The program’s in-

put consists of histories for 29 sensors; however, only two

of them, TrackPos and RPM, are actually used in the pro-

gram. While the sensor TrackPos (for the position of the

car relative to the track axis) is used to decide which con-

troller to use, only the RPM sensor is needed to calculate the

acceleration.

3. Neurally Directed Program Search

Imitating a Neural Policy Oracle. The NDPS algorithm

is a direct policy search that is guided by a neural “oracle”.

Searching over policies is a standard approach in reinforce-

ment learning. However, the nonsmoothness of the space

of programmatic policies poses a fundamental challenge to

the use of such an approach in PIRL. For example, a con-

ceivable way of solving the search problem would be to

define a neighborhood relation over programs and perform

local search. However, in practice, the objective R(e) of
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if (0.001− peek(hTrackPos,−1) > 0) and (0.001 + peek(hTrackPos,−1) > 0)
then 3.97 ∗ peek((0.44− hRPM),−1) + 0.01 ∗ fold(+, (0.44− hRPM)) + 48.79 ∗ (peek(hRPM,−2)− peek(hRPM,−1))
else 3.97 ∗ peek((0.40− hRPM),−1) + 0.01 ∗ fold(+, (0.40− hRPM)) + 48.79 ∗ (peek(hRPM,−2)− peek(hRPM,−1))

Figure 2. A programmatic policy for acceleration, automatically discovered by the NDPS algorithm. hRPM and hTrackPos represent histories

for the RPM and TrackPos sensors, respectively.

such a search can vary irregularly, leading to poor perfor-

mance (see Section 5 for experimental results on this).

In contrast, NDPS starts by using DRL to compute a neural

policy oracle eN for the given environment. This policy is

an approximation of the programmatic policy that we seek

to find. To a first approximation, NDPS is a local search

over programmatic policies that seeks to find a program e∗

that closely imitates the behavior of eN . The main intuition

here is that distance from eN is a simpler objective than

the reward function R(e), which aggregates rewards over

a lengthy time horizon. This approach can be seen to be a

form of imitation learning (Schaal, 1999).

The distance between eN and the estimate e of e∗ in a

search iteration is defined as d(eN , e) =
∑

h∈H
‖e(h) −

eN (h)‖, whereH is a set of “interesting” inputs (histories)

and ‖·‖ is a suitable norm. During the iteration, we search

the neighborhood of e for a program e′ that minimizes this

distance. At the end of the iteration, e′ becomes the new

estimate for e∗.

Input Augmentation. One challenge in the algorithm is

that under the policy e, the agent may encounter histories

that are not possible under eN , or any of the programs en-

countered in previous iterations of the search. For example,

while searching for a steering controller, we may arrive at

a program that, under certain conditions, steers the car into

a wall, an illegal behavior that the neural policy does not

exhibit. Such histories would be irrelevant to the distance

between eN and e if the set H were constructed ahead of

time by simulating eN , and never updated. This would be

unfortunate as these are precisely the inputs on which the

programmatic policy needs guidance.

Our solution to this problem is input augmentation, or pe-

riodic updates to the set H. More precisely, after a certain

number of search steps for a fixed setH, and after choosing

the best available synthesized program for this set, we sam-

ple a set of additional histories by simulating the current

programmatic policy, and add these samples toH.

3.1. Algorithm Details

We show pseudocode for NDPS in Algorithm 1. The inputs

to the algorithm are a POMDP M , a neural policy eN for

Algorithm 1 Neurally Directed Program Search

Input: POMDP M , neural policy eN , sketch S
H ← create histories(eN ,M)
e← initialize(eN ,H,M,S)
R← collect reward(e,M)
repeat

(e′, R′)← (e,R)
H ← update histories(e, eN ,M,H)
E ← neighborhood pool(e)
e← argmine′∈E

∑
h∈H
‖e′(h)− eN (h)‖

R← collect reward(e,M)
until R′ ≥ R

Output: e′

M that serves as an oracle, and a sketch S. The algorithm

first samples a set of histories of eN using the procedure

create histories. Next it uses the routine initialize

to generate the program that is the starting point of the

policy search. Then the procedure collect reward cal-

culates the expected aggregate reward R(e) (described in

Section 2), by simulating the program in the POMDP.

From this point on, NDPS iteratively updates its estimate e

of the target program, as well as its estimateH of the set of

interesting inputs used for distance computation. To do the

former, NDPS uses the procedure neighborhood pool to

generate a space of programs that are structurally similar

to e, then finds the program in this space that minimizes

distance from eN . The latter task is done by the routine

update histories, which heuristically picks interesting

inputs in the trajectory of the learned program and then ob-

tains the corresponding actions from the oracle for those

inputs. This process goes on until the iterative search fails

to improve the estimated reward R of e.

The subroutines used in the above description can be imple-

mented in many ways. Now we elaborate on our implemen-

tation of the important subroutines of NDPS.

The optimization step. The search for a program e′ at

minimal distance from the neural oracle can be imple-

mented in many ways. The approach we use has two steps.

First, we enumerate a set of program templates — numer-

ically parameterized programs — that are structurally sim-
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ilar to e and are permitted by the sketch S, giving prior-

ity to shorter templates. Next, we find optimal parameters

for the enumerated templates. Our primary tool for the

second step is Bayesian optimization (Snoek et al., 2012),

though we also explored a symbolic optimization technique

based on Satisfiability Modulo Theories (SMT) solving

(Appendix B).

The initialization step. The performance of NDPS turns

out to be quite sensitive to the choice of the program that

is the starting point of the search. Our initialization routine

initialize is broadly similar to the optimization step, in

that it attempts to find programs that closely imitate the or-

acle through a combination of template enumeration and

parameter optimization. However, rather than settling on a

single program, initialize generates a pool of programs

that are close in behavior to the oracle. After this, it simu-

lates the programs in the POMDP and returns the program

that achieves the highest reward.

4. Environments for Experiments

In this section, we describe the environments (modeled by

POMDPs) on which we evaluated the NDPS algorithm.

TORCS. We use NDPS to generate controllers for cars in

The Open Racing Car Simulator (TORCS) (Wymann et al.,

2014). TORCS has been used extensively in AI research,

for example in (Salem et al., 2017), (Koutnı́k et al., 2013),

and (Loiacono et al., 2010) among others. (Lillicrap et al.,

2015a) has shown that a Deep Deterministic Policy Gradi-

ent (DDPG) network can be used in RL environments with

continuous action spaces. The DRL agents for TORCS in

this paper implement this approach.

In its full generality TORCS provides a rich environment

with input from up to 89 sensors, and optionally the 3D

graphic from a chosen camera angle in the race. The con-

trollers have to decide the values of 5 parameters during

game play, which correspond to the acceleration, brake,

clutch, gear and steering of the car. Apart from the immedi-

ate challenge of driving the car on the track, controllers also

have to make race-level strategy decisions, like making pit-

stops for fuel. A lower level of complexity is provided in

the Practice Mode setting of TORCS. In this mode all race-

level strategies are removed. Currently, so far as we know,

state-of-the-art DRL models are capable of racing only in

Practice Mode, and this is also the environment that we use.

Here we consider the input from 29 sensors, and decide val-

ues for the acceleration and steering actions.

The sketches used in our experiments are as in the ex-

ample in Section 2, and provide the basic structure of

a proportional-integral-derivative (PID) program, with ap-

propriate holes for parameter and observation values. To

obtain a practical implementation, we constrain the fold

calculation to the five latest observations of the history.

This constraint corresponds to the standard strategy of au-

tomatic (integral) error reset in discretized PID controllers

(Astrom & Hagglund, 1984).

Each track in TORCS can we viewed as a distinct POMDP.

In our implementation of NDPS for TORCS we choose one

track and synthesize a program for it. Whenever the al-

gorithm needs to interact with the POMDP, we use the pro-

gram or DRL agent to race on the track. For example, in the

procedure collect reward we use the synthesized pro-

gram to race one lap, and the reward is a function of the

speed, angle and position of the car at each time step.

For the create histories procedure we use the DRL

agent to complete one lap of the track (an episode), record-

ing the sensor values and environment state at each time

step. The update histories procedure uses a two step

process. First, the synthesized program is used to race one

lap and we store the sequence of observations (given by sen-

sor values) o1, o2, . . . provided by TORCS during this lap.

Then, we use the DRL agent to generate the corresponding

action ai for each observation oi. Each tuple (oi, ai) is then

added to the set of histories.

Classic Control Games. In addition to TORCS, we eval-

uated our approach in three classic control games, Acrobot,

CartPole, and MountainCar. These games provide simpler

RL environments, with fewer input sensors than TORCS

and only a single discrete action at each time step, com-

pared to two continuous actions in TORCS. These results

appear in Appendix A.

5. Experimental Analysis

Now we present an empirical evaluation of the effective-

ness of our algorithm in solving the PIRL problem. We

synthesize programs for two TORCS tracks, CG-Speedway-

1 and Aalborg. These tracks provide varying levels of dif-

ficulty, with Aalborg being the more difficult track of the

two.

5.1. Evaluating Performance

A controller’s performance is measured according to two

metrics, lap time and reward. To calculate the lap time, the

programs are allowed to complete a three lap race, and we

report the average time taken to complete a lap during this

race. The reward function is calculated using the car’s ve-

locity, angle with the track axis, and distance from the track

axis. The same function is used to train the DRL agent ini-

tially. In the experiments we compare the average reward

per time step, obtained by the various programs.

We compare among the following RL agents:
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A1: DRL. An agent which uses DRL to find a policy rep-

resented as a deep neural network. The specific DRL

algorithm we use is Deep Deterministic Policy Gra-

dients (Lillicrap et al., 2015b), which has previously

been used on TORCS.

A2: Naive. Program synthesized without access to a policy

oracle.

A3: NoAug. Program synthesized without input augmenta-

tion.

A4: NoSketch. Program synthesized in our policy lan-

guage without sketch guidance.

A5: NoIF. Programs permitted by a restriction of our

sketch that does not permit conditional branching.

A6: NDPS. The Program generated by the NDPS algo-

rithm.

In Table 1 we present the performance results of the above

list. The lap times in that table are given in minutes and

seconds. The TIMEOUT entries indicate that the synthesis

process did not return a program that could complete the

race, within the specified timeout of twelve hours.

These results justify the various choices that we made in

our NDPS algorithm architecture, as discussed in Section 3.

In many cases those choices were necessary to be able to

synthesize a program that could successfully complete a

race. As a consequence of these results, we only consider

the DRL agent and the NDPS program for subsequent com-

parisons.

The NoAug and NoSketch agents are unable to generate pro-

grams that complete a single lap on either track. In the case

of NoSketch this is because the syntax of the policy lan-

guage (Figure 1), defines a very large program space. If we

randomly sample from this space without any constraints

(like those provided by the sketch), then the probability of

getting a good program is extremely low and hence we are

unable to reliably generate a program that can complete a

lap. The NoAug agent performs poorly because without in-

put augmentation, the synthesizer has no guidance from the

oracle regarding the “correct” behavior once the program

deviates even slightly from the oracle’s trajectory.

The NDPS algorithm is biased towards generating simpler

programs to aid in interpretability. In the NDPS algorithm

experiments we allow the synthesizer to produce policies

with up to five nested if statements. However, if two poli-

cies have LAP TIMES within one second of each other, then

the algorithm chooses the one with fewer if statements as

the output. This is a reasonable choice because a differ-

ence of less than one second in LAP TIMES can be the re-

sult of different starting positions in the TORCS simulator,

and hence the performance of such policies is essentially

equivalent.

Table 1. Performance results in TORCS. Lap time is given in Min-

utes:Seconds. Timeout indicates that the synthesizer did not re-

turn a program that completed the race within the specified time-

out.

MODEL CG-SPEEDWAY-1 AALBORG

LAP TIME REWARD LAP TIME REWARD

DRL 54.27 118.39 1:49.66 71.23
Naive 2:07.09 58.72 TIMEOUT −
NoAug TIMEOUT − TIMEOUT −
NoSketch TIMEOUT − TIMEOUT −
NoIF 1:01.60 115.25 2:45.13 52.81
NDPS 1:01.56 115.32 2:38.87 54.91

5.2. Qualitative Analysis of the Programmatic Policy

We provide qualitative analysis of the inferred program-

matic policy through the lens of interpretability, and its be-

havior in acting in the environment.

Interpretability. Interpretability is a qualitative metric,

and cannot be easily demonstrated via experiments. The

DRL policies are considered uninterpretable because their

policies are encoded in black box neural networks. In con-

trast, the PIRL policies are compact and human-readable

by construction, as exemplified by the acceleration policy

in Figure 2. More examples of our synthesized policies are

given in Appendix C.

Behavior of Policy. Our experimental validation showed

that the programmatic policy was less aggressive in terms

of its use of actions and resulting in smoother steering ac-

tions. Numerically, we measure smoothness in Table 2 by

comparing the population standard deviation of the set of

steering actions taken by the program during the entire race.

In Figure 3 we present a scatter plot of the steering actions

taken by the DRL agent and the NDPS program during a

slice of the CG-Speedway-1 race. As we can see, the NDPS

program takes much more conservative actions.

Table 2. Smoothness measure of agents in TORCS, given by the

standard deviation of the steering actions during a complete race.

Lower values indicate smoother steering.

MODEL CG-SPEEDWAY-1 AALBORG

DRL 0.5981 0.9008
NDPS 0.1312 0.2483
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Figure 3. Slice of steering actions taken by the DRL and NDPS

agents, during the CG-Speedway-1 race. This figure demonstrates

that the NDPS agent drives more smoothly.

5.3. Robustness to Missing/Noisy Features

To evaluate the robustness of the agents with respect to de-

fective sensors we introduce a Partial Observability variant

of TORCS. In this variant, a random sample of j sensors are

declared defective. During the race, one or more of these

defective sensors are blocked with some fixed probability.

Hence, during game-play, the sensor either returns the cor-

rect reading or a null reading. For sufficiently high block

probabilities, both agents will fail to complete the race. In

Table 3 we show the distances raced for two values of the

block probability, and in Figure 4 we plot the distance raced

as we increase the block probability on the Aalborg track.

In both these experiments, the set of defective sensors was

taken to be {RPM, TrackPos} because we know that the

synthesized programs crucially depend on these sensors.

Table 3. Partial observability results in TORCS blocking sensors

{RPM, TrackPos} . For each track and block probability we give

the distance, in meters, raced by the program before crashing.

MODEL CG-SPEEDWAY-1 AALBORG

50% 90% 50% 90%

DRL 21 17 71 20
NDPS 1976 200 1477 287

5.4. Evaluating Generalization to New Instances

To compare the ability of the agents to perform on unseen

tracks, we executed the learned policies on tracks of com-

parable difficulty. For agents trained on the CG-Speedway-

1 track, we chose CG track 2 and E-Road as the transfer

tracks, and for Aalborg trained tracks we chose Alpine 2

and Ruudskogen. As can be seen in Tables 4 and 5, the

NDPS programmatically synthesized program far outper-

forms the DRL agent on unseen tracks. The DRL agent is

unable to complete the race on any of these transfer tracks.

This demonstrates the transferability of the policies NDPS
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Figure 4. Distance raced by the agents as the block probability in-

creases for a particular sensor(s) on Aalborg. The NDPS agent is

more robust to blocked sensors.

finds.

Table 4. Transfer results with training on CG-Speedway-1. ‘Cr’

indicates that the agent crashed after racing the specified distance.

MODEL CG TRACK 2 E-ROAD

LAP TIME REWARD LAP TIME REWARD

DRL CR 1608M − CR 1902M −
NDPS 1:40.57 110.18 1:51.59 98.21

Table 5. Transfer results with training on Aalborg. ‘Cr’ denotes

the agent crashed, after racing the specified distance.

MODEL ALPINE 2 RUUDSKOGEN

LAP TIME REWARD LAP TIME REWARD

DRL CR 1688M − CR 3232M −
NDPS 3:16.68 67.49 3:19.77 57.69

5.5. Verifiability of Policies

Now we use established symbolic verification techniques to

automatically prove two properties of policies generated by

NDPS. So far as we know, the current state of the art neural

network verifiers cannot verify the DRL network we are

using in a reasonable amount of time, due to the size and

complexity of the network used to implement the DDPG

algorithm. For example, the Reluplex (Katz et al., 2017)

algorithm was tested on networks at most 300 nodes wide,

whereas our network has three layers with 600 nodes each,

and other smaller layers.

Smoothness Property For the program given in Fig-

ure 2 we proved, we have ∀k,
∑k+5

i=k
‖peek(hRPM, i +
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1) − peek(hRPM, i)‖ < 0.006 =⇒ ‖peek(hAccel, k +
1) − peek(hAccel, k)‖ < 0.49. Intuitively, the above

logical implication means that if the sum of the con-

secutive differences of the last six RPM sensor values

is less than 0.006, then the acceleration actions calcu-

lated at the last and penultimate step will not differ by

more than 0.49. Similarly, for a policy given in Ap-

pendix C, we prove ∀k,
∑k+5

i=k
‖peek(hTrackPos, i + 1) −

peek(hTrackPos, i)‖ < 0.006 =⇒ ‖peek(hSteer, k+1)−
peek(hSteer, k)‖ < 0.11. This proof gives us a guarantee

of the type of smooth steering behavior that we empirically

examined earlier in this section.

Universal Bounds We can prove that the pro-

gram in Figure 2 satisfies the property ∀i (0 ≤
peek(hRPM, i) ≤ 1 ∧ −1 ≤ peek(hTrackPos, i) ≤
1) =⇒ (‖peek(hSteer, i)‖ < 101.08 ∧ −54.53 <

peek(hAccel, i) < 53.03). Intuitively, this means that

we have proved global bounds for the action values in

this environment, assuming reasonable bounds on some

of the input values. In the TORCS environment these

bounds are not very useful, since the simulator clips these

actions to certain pre-specified ranges. However, this

experiment demonstrates that our framework allows us to

prove universal bounds on the actions, and this could be a

critical property for other environments.

6. Related Work

Syntax-Guided Synthesis. The original formulation of

inductive program synthesis is to search for a program in

a hypothesis space (programming language) that is con-

sistent with a specification (such as IO examples). How-

ever, this search is often intractable because of the large

(potentially infinite) hypothesis space. One of the key

ideas to make this search tractable is to provide the syn-

thesizer a sketch of the desired program in addition to

the examples, for example in (Solar-Lezama, 2009) and

(Feser et al., 2015). The program sketch in addition to pro-

viding structure to the search space also allows users to

provide additional insights. This approach has been gen-

eralized in a framework called Syntax-Guided Synthesis

(SYGUS) (Alur et al., 2015). Our PIRL approach is inspired

by SYGUS in the sense that we also use a high-level gram-

mar to constrain the shape of the possible learnt policies in

a policy language grammar. However, unlike SYGUS and

previous sketch-based synthesis approaches that use logical

constraints as specification, PIRL searches for policies with

quantitative objectives.

Imitation Learning. Imitation learning (Schaal, 1999)

has been a successful paradigm for reducing the sample

complexity of reinforcement learning algorithms by al-

lowing the agent to leverage the additional supervision

provided in terms of expert demonstrations for the de-

sired behaviors. The DAGGER (Dataset Aggregation) al-

gorithm (Ross et al., 2011) is an iterative algorithm for imi-

tation learning that learns stationary deterministic policies,

where in each iteration i it uses the current learnt policy πi

to collect new trajectories and adds them to the dataset D

of all previously found trajectories. The policy for the next

iteration πi+1 is a policy that best mimics the expert pol-

icy π∗ on the whole dataset D. Our Neurally Directed Pro-

gram Search (NDPS) is inspired by the DAGGER algorithm,

where we use the trained DeepRL agent as the expert (or-

acle), and iteratively perform IO augmentation for unseen

input states explored by our synthesized policy with the cur-

rent best reward. However, one key difference is that NDPS

uses the expert trajectories to only guide the local program

search in our policy language grammar to find a policy with

highest rewards, unlike the imitation learning setting where

the goal is to match the expert demonstrations perfectly.

Neural Program Synthesis and Induction. Many re-

cent efforts use neural networks for learning programs.

These efforts have two flavors. In neural program in-

duction, the goal is to learn a network that encodes the

program semantics using internal weights. These archi-

tectures typically augment neural networks with differ-

entiable computational substrates such as memory (Neu-

ral Turing Machines (Graves et al., 2014)), modules (Neu-

ral RAM (Kurach et al., 2015)) or data-structures such as

stacks (Joulin & Mikolov, 2015), and formulate the pro-

gram learning problem in an end-to-end differentiable man-

ner. In neural program synthesis, the architectures gener-

ate programs directly as outputs using multi-task transfer

learning (e.g. ROBUSTFILL (Devlin et al., 2017), DEEP-

CODER (Balog et al., 2016), BAYOU (Murali et al., 2018)),

where the network weights are used to guide the pro-

gram search in a DSL. There have also been some re-

cent approaches to use RL for learning to search programs

in DSLs (Bunel et al., 2018; Abolafia et al., 2018). Our

approach falls in the category of program synthesis ap-

proaches where we synthesize policies in a policy language.

However, we learn richer policy programs with continuous

parameters using the NDPS algorithm.

Interpretable Machine Learning. Many recent ef-

forts in deep learning aim to make deep networks

more interpretable (Montavon et al., 2017; Lipton, 2016;

Garnelo et al., 2016; Zahavy et al., 2016; Shanahan, 2005;

Lake et al., 2016). There are three key approaches explored

for interpreting DNNs: i) generate input prototypes in the

input domain that are representatives of the learned concept

in the abstract domain of the top-level of a DNN, ii) explain-

ing DNN decisions by relevance propagation and comput-

ing corresponding representative concepts in the input do-

main, and iii) Using symbolic techniques to explain and
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interpret a DNN. Our work differs from these approaches

in that we are replacing the DRL model with human read-

able source code, that is programmatically synthesized to

mimic the policy found by the neural network. Working

at this level of abstraction provides a method to apply ex-

isting synthesis techniques to the problem of making DRL

models interpretable.

Verification of Deep Neural Networks. Relu-

plex (Katz et al., 2017) is an SMT solver that supports

linear real arithmetic with ReLU constraints, and has been

used to verify several properties of DNN-based airborne

collision avoidance systems, such as not producing er-

roneous alerts and uniformity of alert regions. Unlike

Reluplex, our framework generates interpretable program

source code as output, where we can use traditional

symbolic program verification techniques (King, 1976) to

prove program properties.

7. Conclusion

We have introduced a framework for interpretable rein-

forcement learning, called PIRL. Here, policies are repre-

sented in a high-level language. The goal is to find a policy

that fits a syntactic “sketch” and also has optimal long-term

reward. We have given an algorithm inspired by imitation

learning, called NDPS, to achieve this goal. Our results

show that the method is able to generate interpretable poli-

cies that clear reasonable performance goals, are amenable

to symbolic verification, and, assuming a well-designed

sketch, are robust and easily transferred to unseen environ-

ments.

The experiments in this paper only considered environ-

ments with symbolic inputs. Handling perceptual inputs

may raise additional algorithmic challenges, and is a natu-

ral next step. Also, in this paper, we only considered de-

terministic (if memoryful) policies. Extending our frame-

work to stochastic policies is a goal for future work. Fi-

nally, while we explored policies in the context of rein-

forcement learning, one could define similar frameworks

for other learning settings.
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Appendix: Programmatically Interpretable Reinforcement Learning

A. Evaluation on Classic Control Games

In this section, we provide results of additional experimen-

tal evaluation on some classic control games. We use the

OpenAI Gym environment implementation of these games.

A brief description of these games is given below.

We used the DUEL-DDQN algorithm (Wang et al., 2015)

to obtain our neural policy oracle for these games, rather

than DDPG, as an implementation of Duel-DDQN already

appears on the OpenAI Gym leader-board.

Table 6. Rewards achieved in Classic Control Games. Acrobot

does not have threshold at which it is considered solved.

ACROBOT CARTPOLE MOUNTAINCAR

SOLVED − 195 -110
DRL -63.17 197.53 -84.73
NDPS-SMT -84.16 183.15 -108.06
NDPS-BOPT -127.21 143.21 -143.86
MINIMUM -200 8 -200

Acrobot. This environment consists of a two link, two

joint robot. The joint between the links is actuated. At the

start of the episode, the links are hanging downwards. At

every timestep the agent chooses an action that correspond

to applying a force to move the actuated link to the right, to

the left, or to not applying a force. The episode is over once

the end of the lower link swings above a certain height. The

goal is to end the episode in the fewest possible timesteps.

We use the OpenAI Gym ‘Acrobot-v1’ environment.

This implementation is based on the system presented

in (Geramifard et al., 2015). Each observation is a set con-

sisting of readings from six sensors, corresponding to the

rotational joint angles and velocities of joints and links.

The action space is discrete with three elements, and at each

timestep the environment returns the observation and a re-

ward of −1. An episode is terminated after 200 time steps

irrespective of the state of the robot. This is an unsolved en-

vironment, which means it does not have a specified reward

threshold at which it’s considered solved.

CartPole. This environment consists of a pole attached

by an un-actuated joint to a cart that moves along a friction-

less track. At the beginning, the pole is balanced vertically

on the cart. The episode ends when the pole is more than

15◦ from vertical, or the cart moves more than 2.4 units

from the center. At every timestep the agent chooses to ap-

ply a force to move the cart to the right or to the left, and the

goal is to prevent an episode from ending for the maximum

possible timesteps.

We use the OpenAI Gym ‘CartPole-v0’ environment, based

on the system presented in (Barto et al., 1983). The sensor

values correspond to the cart position, cart velocity, pole

angle and pole velocity. The action space is discrete with

two elements, and at each timestep the environment returns

the observation and a reward of +1. An episode is termi-

nated after 200 time steps irrespective of the state of the

cart. CartPole-v0 defines “solving” as getting an average

reward of at least 195.0 over 100 consecutive trials.

MountainCar. This environment consists of an under-

powered car on a one-dimensional track. At the beginning,

the car is placed between two ‘hills’. The episode ends

when the car reaches the top of the hill in front of it. Since

the car is underpowered, the agent needs to drive it back

and forth to build momentum. At every timestep the agent

chooses to apply a force to move the car to the right, to the

left, or to not apply a force. The goal is to end the episode

in the fewest possible timesteps.

We use the OpenAI Gym ‘MountainCar-v0’ environment.

This implementation is based on the system presented

in (Moore, 1991). The sensors provide the position and

velocity of the car. The action space is discrete with three

elements, and at each timestep the environment returns the

observation and a reward of −1. An episode is terminated

after 200 time steps irrespective of the state of the robot.

MountainCar-v0 is considered “solved” if the average re-

ward over 100 consecutive trials is not less than -110.0.

Results. Table 6 shows rewards obtained by optimal poli-

cies found using various methods in these environments.

The first row gives numbers for the DRL method. The rows

NDPS-SMT and NDPS-BOPT for versions of the NDPS al-

gorithm that respectively use SMT-based optimization and

Bayesian optimization to find template parameters (more

on this below).

B. Additional Details on Algorithm

Now we elaborate on the optimization techniques we used

in the distance computation step argmine′
∑

h∈H‖e
′(h)−

eN (h)‖, to find a program similar to a given program e, in

Algorithm 1.
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0.97 ∗ peek((0.0− hTrackPos),−1)+ 0.05 ∗ fold(+, (0.0− hTrackPos))+ 49.98 ∗ (peek(hTrackPos,−2)− peek(hTrackPos,−1))

Figure 5. A programmatic policy for steering, automatically discovered by the NDPS algorithm with training on Aalborg.

if (0.0001− peek(hTrackPos,−1) > 0) and (0.0001 + peek(hTrackPos,−1) > 0)
then 0.95 ∗ peek((0.64− hRPM),−1) + 5.02 ∗ fold(+, (0.64− hRPM)) + 43.89 ∗ (peek(hRPM,−2)− peek(hRPM,−1))
else 0.95 ∗ peek((0.60− hRPM),−1) + 5.02 ∗ fold(+, (0.60− hRPM)) + 43.89 ∗ (peek(hRPM,−2)− peek(hRPM,−1))

Figure 6. A programmatic policy for acceleration, automatically discovered by the NDPS algorithm with training on CG-Speedway-1.

0.86 ∗ peek((0.0− hTrackPos),−1)+ 0.09 ∗ fold(+, (0.0− hTrackPos))+ 46.51 ∗ (peek(hTrackPos,−2)− peek(hTrackPos,−1))

Figure 7. A programmatic policy for steering, automatically discovered by the NDPS algorithm with training on CG-Speedway-1.

As mentioned in the main paper, we start by enumerating

a list of program templates, or programs with numerical-

valued parameters θ. This is done by first replacing the nu-

merical constants in e by parameters, eliding some subex-

pressions from the resulting parameterized program, and

then regenerating the subexpressions using the rules of S
(without instantiating the parameters), giving priority to

shorter expressions. The resulting program template eθ fol-

lows the sketch S and is also structurally close to e. Now

we search for values for parameters θ that optimally imitate

the neural oracle.

Bayesian optimization. We use Bayesian optimization

as our primary tool when searching for such optimal pa-

rameter values. This method applies to problems in which

actions (program outputs) can be represented as vectors of

real numbers. All problems considered in our experiments

fall in this category. The distance of individual pairs of

outputs of the synthesized program and the policy oracle

is then simply the Euclidean distance between them. The

sum of these distances is used to define the aggregate cost

across all inputs in H. We then use Bayesian optimization

to find parameters that minimize this cost.

SMT-based Optimization. We also use a second param-

eter search technique based on SMT (Satisfiability Modulo

Theories) solving. Here, we generate a constraint that stip-

ulates that for each h ∈ H, the output eθ(h) must match

eN (h) up to a constant error. Here, eN (h) is a constant

value obtained by executing eN . The output eθ(h) depends

on unknown parameters θ; however, constraints over eθ(h)
can be represented as constraints over θ using techniques

if (0.1357 + peek(h4,−1)) < 0
then 2
else 0

Figure 8. A programmatic policy for Acrobot, automatically dis-

covered by the NDPS algorithm.

if (fold(+, h0)− peek(h3,−1)) > 0
then 0
else 1

Figure 9. A programmatic policy for CartPole, automatically dis-

covered by the NDPS algorithm.

if (0.2498− peek(h0,−1) > 0)
and (0.0035− peek(h1,−1) < 0)

then 0
else 2

Figure 10. A programmatic policy for MountainCar, automati-

cally discovered by the NDPS algorithm.

for symbolic execution of programs (Cadar & Sen, 2013).

Because the oracle is only an approximation to the optimal

policy in our setting, we do not insist that the generated

constraint is satisfied entirely. Instead, we set up a Max-

Sat problem which assigns a weight to the constraint for

each input h, and then solve this problem with a Max-Sat

solver.

Unfortunately, SMT-based optimization does not scale well
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in environments with continuous actions. Consequently,

we exclusively use Bayesian optimization for all TORCS

based experiments. SMT-based optimization can be used

in the classic control games, however, and Table 6 shows

results generated using this technique (in row NDPS-SMT).

The results in Table 6 show that for the classic control

games, SMT-based optimization gives better results. This

is because the small number of legal actions in these games,

limited to at most three values {0, 1, 2}, are well suited

for the SMT setting. The SMT solver is able to efficiently

perform parameter optimization, with a small set of histo-

ries. Whereas, the limited variability in actions forces the

Bayesian optimization method to use a larger set of histo-

ries, and makes it harder for the method to avoid getting

trapped in local minimas.

C. Policy Examples

In this section we present more examples of the policies

found by the NDPS algorithm.

The program in Figure 5 shows the body of a policy for

steering, which together with the acceleration policy given

in the paper (Figure 2), was found by the NDPS algorithm

by training on the Aalborg track. Figures 6 & 7 likewise

show the policies for acceleration and steering respectively,

when trained on the CG-Speedway-1 track. Similarly, Fig-

ures 8, 9 & 10 show policies found for Acrobot, CartPole,

and MountainCar respectively. Here hi is the sequence of

observations from the i-th of k sensors, for example h0 is

the 0-th sensor. The sensor order is determined by the Ope-

nAI simulator.

D. TORCS Video

We provide a video at the following link, which depicts

clips of the DRL agent and the NDPS algorithm synthesized

program, on the training track and one of the transfer (un-

seen) tracks, in that order:

https://goo.gl/Z2X5x6

On the training track, we can see that the steering actions

taken by the DRL agent are very irregular, especially when

compared to the smooth steering actions of the NDPS agent

in the following clip. For the transfer track, we show the

agents driving on the E-Road track. We can see that the

DRL agent crashes before completing a full lap, while the

NDPS agent does not crash. We have provided only small

clips of the car during a race, to keep the video length and

size small, but the behavior is representative of the agent

for the entire race.


